Projection methods for large T-Sylvester equations
نویسندگان
چکیده
The matrix Sylvester equation for congruence, or T-Sylvester equation, has recently attracted considerable attention as a consequence of its close relation to palindromic eigenvalue problems. The theory concerning T-Sylvester equations is rather well understood and there are stable and efficient numerical algorithms which solve these equations for smallto medium-sized matrices. However, developing numerical algorithms for solving large T-Sylvester equations still remains an open problem. In this paper, we present several projection algorithms based on different Krylov spaces for solving this problem when the right-hand side of the T-Sylvester equation is a low-rank matrix. The new algorithms have been extensively tested and compared in practice, and the reported numerical results show that they work very well and offer a clear guidance on which algorithm is the most convenient in each situation.
منابع مشابه
On the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملProjection methods for large-scale T-Sylvester equations
The matrix Sylvester equation for congruence, or T-Sylvester equation, has recently attracted considerable attention as a consequence of its close relation to palindromic eigenvalue problems. The theory concerning T-Sylvester equations is rather well understood and there are stable and efficient numerical algorithms which solve these equations for smallto medium-sized matrices. However, develop...
متن کاملGlobal conjugate gradient method for solving large general Sylvester matrix equation
In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$ is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...
متن کاملOn the Numerical Solution of Generalized Sylvester Matrix Equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection methods onto matrix Kr...
متن کاملGauss-Sidel and Successive Over Relaxation Iterative Methods for Solving System of Fuzzy Sylvester Equations
In this paper, we present Gauss-Sidel and successive over relaxation (SOR) iterative methods for finding the approximate solution system of fuzzy Sylvester equations (SFSE), AX + XB = C, where A and B are two m*m crisp matrices, C is an m*m fuzzy matrix and X is an m*m unknown matrix. Finally, the proposed iterative methods are illustrated by solving one example.
متن کامل